
Fixing the UX for one-time tasks on Kubernetes
This article was fetched from an rss feed(06/09/2022)

I wanted to run a container for a customer only once, but the UX just wasn't simple enough. So I created a new OSS utility with Go and the Kubernetes API.

A Deployment will usually restart, so will a Pod. You can set the "restartPolicy" to "Never", but it's still not a good fit for something that's meant to start - run and complete.

Why would you want to run a one-time job?

Here are a few ideas:

Running kubectl within the cluster under a specific Service Account
Checking curl works from within the cluster
Checking inter-pod DNS is working
Cleaning up a DB index
A network scan with nmap
Tasks that you'd usually run on cron
Dynamic DNS updates
Generating a weekly feed / report / update / sync
Running a container build with Kaniko

Another use-case may be where you're running bash, but need to execute something within the cluster and get results back before going further.

I'll show you what working with a Job looks like today and how we can make it better with a little Go code.

What a Job looks like

So I looked again at the Kubernetes Job, which is an API that I rarely see used. They look a bit like this:

apiVersion: batch/v1

kind: Job

metadata:

 name: pi
spec:
 suspend: true

 parallelism: 1

 completions: 5

 template:

 spec:

 containers:

 - name: pi

 image: perl:5.34.0

 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

 restartPolicy: Always

 backoffLimit: 4

Example from the Kubernetes docs

So the overall spec is similar to a Pod, but it's unfamiliar enough to cause syntax errors when composing these by hand.

What's more: a Job isn't something that you run, then get its logs and continue with your day.

You have to describe the job, to find a Pod that it created with a semi-random name, and then get the logs from that.

kubectl describe jobs/myjob

Name: myjob

...

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal SuccessfulCreate 12m job-controller Created pod: myjob-hlrpl

 Normal SuccessfulDelete 11m job-controller Deleted pod: myjob-hlrpl

 Normal Suspended 11m job-controller Job suspended

https://blog.alexellis.io/fixing-the-ux-for-one-time-tasks-on-kubernetes/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

 Normal SuccessfulCreate 3s job-controller Created pod: myjob-jvb44

 Normal Resumed 3s job-controller Job resumed

So you end up with something like this:

apiVersion: batch/v1

kind: Job

metadata:

 name: checker

 namespace: openfaas

spec:
 completions: 1

 parallelism: 1

 template:

 metadata:

 name: checker

 spec:

 serviceAccount: openfaas-checker

 containers:

 - name: checker

 image: ghcr.io/openfaas/config-checker:latest

 imagePullPolicy: Always

 restartPolicy: Never

And in my instance, I also wanted RBAC.

Then you'd:

Apply the RBAC file

Apply the Job

Describe the Job

Find the Pod name

Get the Pod logs

Delete the Job/Pod

#!/bin/bash

JOBUUID=$(kubectl get job -n openfaas $JOBNAME -o "jsonpath={.metadata.labels.controller-uid}")
PODNAME=$(kubectl get po -n openfaas -l controller-uid=$JOBUUID
-o name)

kubectl logs -n openfaas $PODNAME > $(date '+%Y-%m-%d_%H_%M_%S').txt

kubectl delete -n openfaas $PODNAME
kubectl delete -f ./artifacts/job.yaml

Can we do better?

I think we can. And in a past life, all the way back in 2017, before Kubernetes won me over, I was using Docker Swarm.

I wrote a little tool called "jaas" and it turned out to be quite popular with people using it for one-time tasks that would run on Docker Swarm.

View the code: alexellis/jaas

I also remembered that Stefan Prodan who was a friend of mine and a past contributor to OpenFaaS had once had this itch and created something called kjob.

Stefan's not touched the code for three years, but his approach was to take a CronJob as a template, then to add in a few alterations. It's flexible because it means you can do just about
anything you want with the spec, then you override one or two fields.

But I wanted to move away from lesser-known Kubernetes APIs and get a user-experience that could be as simple as:

kubectl apply -f ./artifacts/rbac.yaml

run-job ./job.yaml -o report.txt

Enter run-job

So that's how run-job was born.

My previous example became:

name: checker

image: ghcr.io/openfaas/config-checker:latest

namespace: openfaas

service_account: openfaas-checker

And this was run with run-job -f job.yaml.

Then I thought, let's make this more fun. The cows function in OpenFaaS is one of the most popular for demos and was also part of the codebase for jaas.

Here's its Dockerfile:

FROM --platform=${TARGETPLATFORM:-linux/amd64} alpine:3.16 as builder

ARG TARGETPLATFORM

ARG BUILDPLATFORM

ARG TARGETOS

ARG TARGETARCH

RUN mkdir -p /home/app

RUN apk add --no-cache nodejs npm

Add non root user

RUN addgroup -S app && adduser app -S -G app

RUN chown app /home/app

WORKDIR /home/app

USER app

https://github.com/openfaas/config-checker/blob/master/artifacts/rbac.yaml
https://github.com/alexellis/jaas
https://github.com/stefanprodan/kjob/tree/master/pkg/jobrunner
https://github.com/alexellis/run-job

COPY package.json .

RUN npm install --omit=dev

COPY index.js .

CMD ["/usr/bin/node", "./index.js"]

It's multi-arch and you can either use buildx or faas-cli to compile it for various architectures.

$ cat <<EOF > cows.yaml

Multi-arch image for arm64, amd64 and armv7l

image: alexellis2/cows:2022-09-05-1955

name: cows
EOF

Here's what it looks like:

$ run-job -f cows.yaml

 () ()

 ()()

 (oo)

 /-------UU

 / | ||

* ||w---||

 ^^ ^^

Eh, What's up Doc?

With kubectl get events -w we can see what's actually happening behind the scenes:

0s Normal SuccessfulCreate job/cows Created pod: cows-5qld5

0s Normal Scheduled pod/cows-5qld5 Successfully assigned default/cows-5qld5 to k3s-eu-west-agent-1

0s Normal Pulling pod/cows-5qld5 Pulling image "alexellis2/cows:2022-09-05-1955"

0s Normal Pulled pod/cows-5qld5 Successfully pulled image "alexellis2/cows:2022-09-05-1955" in 877.707423ms

1s Normal Created pod/cows-5qld5 Created container cows

0s Normal Started pod/cows-5qld5 Started container cows

0s Normal Completed job/cows Job completed

An example to use at work

But we can also do for-work kinds of things with one-shot tasks.

Imagine that you wanted to get metadata on all your Kubernetes nodes.

You'd need an RBAC file for that:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: kubectl-run-job

 namespace: default

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 labels:

 app: run-job

 name: kubectl-run-job

rules:

- apiGroups: [""]

 resources: ["nodes"]

 verbs:

 - get

 - list

 - watch

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 labels:

 app: run-job

 name: kubectl-run-job

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: kubectl-run-job

subjects:

 - kind: ServiceAccount

 name: kubectl-run-job

 namespace: default

Then you'd need a container image with kubectl pre-installed, so let's make that:

FROM --platform=${TARGETPLATFORM:-linux/amd64} alpine:3.16 as builder

ARG TARGETPLATFORM

ARG BUILDPLATFORM

ARG TARGETOS

ARG TARGETARCH

RUN mkdir -p /home/app

Add non root user

RUN addgroup -S app && adduser app -S -G app

RUN chown app /home/app

RUN apk add --no-cache curl && curl -SLs https://get.arkade.dev | sh

WORKDIR /home/app

USER app

RUN arkade get kubectl@v1.24.1 --quiet

CMD ["/home/app/.arkade/bin/kubectl", "get", "nodes", "-o", "wide"]

We'd also create a YAML file for the job:

name: get-nodes

image: alexellis2/kubectl:2022-09-05-2243

namespace: default

service_account: kubectl-run-job

Finally, we'd run the job:

$ kubectl apply ./examples/kubectl/rbac.yaml

$ run-job -f ./examples/kubectl/kubectl_get_nodes_job.yaml

Created job get-nodes.default (4097ed06-9422-41c2-86ac-6d4a447d10ab)

....

Job get-nodes.default (4097ed06-9422-41c2-86ac-6d4a447d10ab) succeeded

Deleted job get-nodes

Recorded: 2022-09-05 21:43:57.875629 +0000 UTC

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION
k3s-server-1 Ready control-plane,etcd,master 25h v1.24.4+k3s1 192.168.2.1 <none> Raspbian GNU/Linux 10 (buster) 5.10.103-v7l+
k3s-server-2 Ready control-plane,etcd,master 25h v1.24.4+k3s1 192.168.2.2 <none> Raspbian GNU/Linux 10 (buster) 5.10.103-v7l+
k3s-server-3 Ready control-plane,etcd,master 25h v1.24.4+k3s1 192.168.2.3 <none> Raspbian GNU/Linux 10 (buster) 5.10.103-v7l+ c

Now, you can also specify the command and arguments for the command in the job file, so you could get the same output in JSON and pipe it through to jq to automate things in bash:

name: get-nodes

image: alexellis2/kubectl:2022-09-05-2243

namespace: default

service_account: kubectl-run-job

command:

 - kubectl
args:
 - get nodes

 - -o
 - json

Summing up

The point of run-job really is to make running a one-time container on Kubernetes simpler than the experience of crafting YAML and typing in half a dozen kubectl commands.

If you think it may be useful for you, then run-job is available via arkade get run-job along with over 100 other CLIs that download much quicker than brew.

We've also had the first contribution to the repo, which was to add the "command" and "args" options to the YAML file. The idea isn't to replicate every field in the Pod and Job
specification, but just enough to make "run-job -f job-file.yaml` useful and convenient for supporting customers and running ad-hoc tasks.

Star on GitHub: alexellis/run-job

At OpenFaaS Ltd, we've used run-job with a customer to check their OpenFaaS Deployments and the configuration of their functions. The container is a Go program and you may like
to take a look at it, to adapt it to check your own systems?

For those of us who are interested in manipulating and querying a Kubernetes cluster from code, the Go client provides a really good experience with hundreds of OSS examples
available.

Read the code: openfaas/config-checker

If you're really into checking remote Kubernetes clusters for your customers, then Replicated have a similar, but more generic tool to openfaas/config-checker called "troubleshoot"
which can be used to create bundles.

The bundles collect data from the customer's environment for you and you get to write in a DSL.

https://arkade.dev/
https://github.com/alexellis/run-job/
https://github.com/openfaas/config-checker
https://github.com/replicatedhq/troubleshoot

